Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
medrxiv; 2023.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2023.07.14.23292680

RESUMO

Recent outbreaks of enterovirus D68 (EV-D68) infections, and their causal linkage with acute flaccid myelitis (AFM), continue to pose a serious public health concern. During 2020 and 2021, the dynamics of EV-D68 and other pathogens have been significantly perturbed by non-pharmaceutical interventions against COVID-19; this perturbation presents a powerful natural experiment for exploring the dynamics of these endemic infections. In this study, we analyzed publicly available data on EV-D68 infections, originally collected through the New Vaccine Surveillance Network, to predict their short- and long-term dynamics following the COVID-19 interventions. Although there are large uncertainties in our predictions, the likelihood of a large outbreak in 2023 appears to be low. Comprehensive surveillance data are needed to narrow uncertainties in future dynamics of EV-D68. The limited incidence of AFM cases in 2022, despite large EV-D68 outbreaks, poses further questions for the timing of the next AFM outbreaks.


Assuntos
COVID-19 , Mielite Transversa
2.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.08.01.22278288

RESUMO

Asymptomatic infections have hampered the ability to characterize and prevent the transmission of SARS-CoV-2 throughout the ongoing pandemic. Even though asymptomatic infections reduce severity at the individual level, they can make population-level outcomes worse if asymptomatic individuals---unaware they are infected---transmit more than symptomatic individuals. Using an epidemic model, we show that intermediate levels of asymptomatic infection lead to the highest levels of epidemic fatalities when the increase in asymptomatic transmission, due either to individual behavior or mitigation efforts, is strong. We generalize this result to include presymptomatic transmission, showing how intermediate levels of non-symptomatic transmission can lead to the highest levels of fatalities. Finally, we extend our framework to illustrate how the intersection of asymptomatic spread and immunity profiles determine epidemic trajectories, including population-level severity, of future variants.

3.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.07.02.22277186

RESUMO

Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission and control. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection and transmission---for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we re-analyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same data set reported shorter mean observed incubation period (3.2 days vs 4.4 days) and serial interval (3.5 days vs 4.1 days) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8--4.5 days) for both variants but a shorter mean generation interval for the Omicron variant (3.0 days; 95\% CI: 2.7--3.2 days) than for the Delta variant (3.8 days; 95\% CI: 3.7--4.0 days). We further note that the differences in estimated generation intervals may be driven by the "network effect"---higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant.

4.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.03.12.22271872

RESUMO

In response to the COVID-19 pandemic, the South African government employed various nonpharmaceutical interventions (NPIs) in order to reduce the spread of SARS-CoV-2. In addition to mitigating transmission of SARS-CoV-2, these public health measures have also functioned in slowing the spread of other endemic respiratory pathogens. Surveillance data from South Africa indicates low circulation of respiratory syncytial virus (RSV) throughout the 2020-2021 Southern Hemisphere winter seasons. Here we fit age-structured epidemiological models to national surveillance data to predict the 2022 RSV outbreak following two suppressed seasons. We project a 32% increase in the peak number of monthly hospitalizations among infants < 2 years, with older infants (6-23 month olds) experiencing a larger portion of severe disease burden than typical. Our results suggest that hospital system readiness should be prepared for an intense RSV season in early 2022.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial
5.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270721

RESUMO

Excess mortality studies provide crucial information regarding the health burden of pandemics and other large-scale events. Here, we used time series approaches to separate the direct contribution of SARS-CoV-2 infections on mortality from the indirect consequences of pandemic interventions and behavior changes in the United States. We estimated deaths occurring in excess of seasonal baselines stratified by state, age, week and cause (all causes, COVID-19 and respiratory diseases, Alzheimer’s disease, cancer, cerebrovascular disease, diabetes, heart disease, and external causes, including suicides, opioids, accidents) from March 1, 2020 to April 30, 2021. Our estimates of COVID-19 excess deaths were highly correlated with SARS-CoV-2 serology, lending support to our approach. Over the study period, we estimate an excess of 666,000 (95% Confidence Interval (CI) 556000, 774000) all-cause deaths, of which 90% could be attributed to the direct impact of SARS-CoV-2 infection, and 78% were reflected in official COVID-19 statistics. Mortality from all disease conditions rose during the pandemic, except for cancer. The largest direct impacts of the pandemic were seen in mortality from diabetes, Alzheimer’s, and heart diseases, and in age groups over 65 years. In contrast, the largest indirect consequences of the pandemic were seen in deaths from external causes, which increased by 45,300 (95% CI 30,800, 59,500) and were statistically linked to the intensity of non-pharmaceutical interventions. Within this category, increases were most pronounced in mortality from accidents and injuries, drug overdoses, and assaults and homicides, while the rate of death from suicides remained stable. Younger age groups suffered the brunt of these indirect effects. Overall, on a national scale, the largest consequences of the COVID-19 pandemic are attributable to the direct impact of SARS-CoV-2 infections; yet, the secondary impacts dominate among younger age groups, in periods of stricter interventions, and in mortality from external causes. Further research on the drivers of indirect mortality is warranted to optimize interventions in future pandemics.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Transtornos Cerebrovasculares , Neoplasias , Ferimentos e Lesões , COVID-19 , Cardiopatias
6.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.12.13.21267725

RESUMO

Vaccination provides a powerful tool for mitigating and controlling the COVID-19 pandemic. However, a number of factors reduce these potential benefits. The first problem arises from heterogeneities in vaccine supply and uptake: from global inequities in vaccine distribution, to local variations in uptake derived from vaccine hesitancy. The second complexity is biological: though several COVID-19 vaccines offer substantial protection against infection and disease, ‘breakthrough’ reinfection of vaccinees (and subsequent retransmission from these individuals) can occur, driven especially by new viral variants. Here, using a simple epidemiological model, we show that the combination of infection of remaining susceptible individuals and breakthrough infections of vaccinees can have significant effects in promoting infection of invading variants, even when vaccination rates are high and onward transmission from vaccinees relatively weak. Elaborations of the model show how heterogeneities in immunity and mixing between vaccinated and unvaccinated sub-populations modulate these effects, underlining the importance of quantifying these variables. Overall, our results indicate that high vaccination coverage still leaves no room for complacency if variants are circulating that can elude immunity, even if this happens at very low rates.


Assuntos
COVID-19
7.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.02.01.21250944

RESUMO

As the threat of Covid-19 continues and in the face of vaccine dose shortages and logistical challenges, various deployment strategies are being proposed to increase population immunity levels. How timing of delivery of the second dose affects infection burden but also prospects for the evolution of viral immune escape are critical questions. Both hinge on the strength and duration (i.e. robustness) of the immune response elicited by a single dose, compared to natural and two-dose immunity. Building on an existing immuno-epidemiological model, we find that in the short-term, focusing on one dose generally decreases infections, but longer-term outcomes depend on this relative immune robustness. We then explore three scenarios of selection, evaluating how different second dose delays might drive immune escape via a build-up of partially immune individuals. Under certain scenarios, we find that a one-dose policy may increase the potential for antigenic evolution. We highlight the critical need to test viral loads and quantify immune responses after one vaccine dose, and to ramp up vaccination efforts throughout the world.


Assuntos
COVID-19
8.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.07.23.20069468

RESUMO

The lack of active surveillance for enterovirus D68 (EV-D68) in the US has hampered the ability to assess the relationship with predominantly biennial epidemics of acute flaccid myelitis (AFM), a rare but serious neurological condition. Using novel surveillance data from the BioFire ® Syndromic Trends (Trend) epidemiology network, we characterize the epidemiological dynamics of EV-D68 and demonstrate strong spatiotemporal association with AFM. Although the recent dominant biennial cycles of EV-D68 dynamics may not be stable, we show that a major EV-D68 epidemic, and hence an AFM outbreak, would still be possible in 2020 under normal epidemiological conditions. Significant social distancing due to the ongoing COVID-19 pandemic could reduce the size of an EV-D68 epidemic in 2020, illustrating the potential broader epidemiological impact of the pandemic. NOTE This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


Assuntos
COVID-19 , Infecções por Enterovirus , Mielite , Doenças Neurodegenerativas
9.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.06.20.20130476

RESUMO

It is imperative to advance our understanding of heterogeneities in the transmission of SARS-CoV-2 such as age-specific infectiousness and super-spreading. To this end, it is important to exploit multiple data streams that are becoming abundantly available during the pandemic. In this paper, we formulate an individual-level spatio-temporal mechanistic framework to integrate individual surveillance data with geo-location data and aggregate mobility data, enabling a more granular understanding of the transmission dynamics of SARS-CoV-2. We analyze reported cases, between March and early May 2020, in five (urban and rural) counties in the State of Georgia USA. First, our results show that the reproductive number reduced to below 1 in about two weeks after the shelter-in-place order. Super-spreading appears to be widespread across space and time, and it may have a particularly important role in driving the outbreak in rural areas and an increasing importance towards later stages of outbreaks in both urban and rural settings. Overall, about 2% of cases were directly responsible for 20% of all infections. We estimate that the infected non-elderly cases (<60) may be 2.78 [2.10, 4.22] times more infectious than the elderly, and the former tend to be the main driver of super-spreading. Our results improve our understanding of the natural history and transmission dynamics of SARS-CoV-2. More importantly, we reveal the roles of age-specific infectiousness and characterize systematic variations and associated risk factors of super-spreading. These have important implications for the planning of relaxing social distancing and, more generally, designing optimal control measures. Significance StatementThere is still considerable scope for advancing our understanding of the epidemiology and ecology of COVID-19. In particular, much is unknown about individual-level transmission heterogeneities such as super-spreading and age-specific infectiousness. We statistically synthesize multiple valuable datastreams, including surveillance data and mobility data, that are available during the current COVID-19 pandemic. We show that age is an important factor in the transmission of the virus. Super-spreading is ubiquitous over space and time, and has particular importance in rural areas and later stages of an outbreak. Our results improve our understanding of the natural history the virus and have important implications for designing optimal control measures.


Assuntos
COVID-19
10.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.06.04.20122713

RESUMO

G eneration intervals and serial intervals are critical quantities for characterizing outbreak dynamics. Generation intervals characterize the time between infection and transmission, while serial intervals characterize the time between the onset of symptoms in a chain of transmission. They are often used interchangeably, leading to misunderstanding of how these intervals link the epidemic growth rate r and the reproduction number ℛ . Generation intervals provide a mechanistic link between r and ℛ but are harder to measure via contact tracing. While serial intervals are easier to measure from contact tracing, recent studies suggest that the two intervals give different estimates of ℛ from r . We present a general framework for characterizing epidemiological delays based on cohorts (i.e., a group of individuals that share the same event time, such as symptom onset) and show that forward-looking serial intervals, which correctly link ℛ with r , are not the same as “intrinsic” serial intervals, but instead change with r . We provide a heuristic method for addressing potential biases that can arise from not accounting for changes in serial intervals across cohorts and apply the method to estimating ℛ for the COVID-19 outbreak in China using serial-interval data — our analysis shows that using incorrectly defined serial intervals can severely bias estimates. This study demonstrates the importance of early epidemiological investigation through contact tracing and provides a rationale for reassessing generation intervals, serial intervals, and ℛ estimates, for COVID-19. Significance Statement The generation- and serial-interval distributions are key, but different, quantities in outbreak analyses. Recent theoretical studies suggest that two distributions give different estimates of the reproduction number ℛ from the exponential growth rate r ; however, both intervals, by definition, describe disease transmission at the individual level. Here, we show that the serial-interval distribution, defined from the correct reference time and cohort, gives the same estimate of ℛ as the generation-interval distribution. We then apply our framework to serial-interval data from the COVID-19 outbreak in China. While our study supports the use of serial-interval distributions in estimating ℛ , it also reveals necessary changes to the current understanding and applications of serial-interval distribution.


Assuntos
COVID-19
11.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.01.30.20019844

RESUMO

Respiratory illness caused by a novel coronavirus (COVID-19) appeared in China during December 2019. Attempting to contain infection, China banned travel to and from Wuhan city on 23 January and implemented a national emergency response. Here we evaluate the spread and control of the epidemic based on a unique synthesis of data including case reports, human movement and public health interventions. The Wuhan shutdown slowed the dispersal of infection to other cities by an estimated 2.91 days (95%CI: 2.54-3.29), delaying epidemic growth elsewhere in China. Other cities that implemented control measures pre-emptively reported 33.3% (11.1-44.4%) fewer cases in the first week of their outbreaks (13.0; 7.1-18.8) compared with cities that started control later (20.6; 14.5-26.8). Among interventions investigated here, the most effective were suspending intra-city public transport, closing entertainment venues and banning public gatherings. The national emergency response delayed the growth and limited the size of the COVID-19 epidemic and, by 19 February (day 50), had averted hundreds of thousands of cases across China.


Assuntos
COVID-19 , Insuficiência Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA